Baterai dan jenisnya

Baterai adalah salah satu alat penting untuk penyimpan dan konversi energi yang bekerja berdasarkan prinsip elektrokimia. Jadi, baterai sebenarnya merupakan sebuah sel elektrokimia. Berdasarkan cara kerjanya, sel elektrokimia dapat dibagi menjadi dua, yaitu: sel galvanis dan sel elektrolisa. Sel galvanis, yang juga disebut sel volta, merubah energi kimia menjadi kerja listrik sedangkan sel elektrolisa merubah kerja listrik untuk menggerakkan reaksi kimia tak spontan. Dalam baterai biasa, komponen kimia terkandung dalam alat itu sendiri. Jika reaktan dipasok dari sumber luar ketika dikonsumsi, alat ini disebut sel bahan bakar (fuel cell).

Komponen utama sebuah baterai terdiri dari dua bahan konduktor tak sejenis (elektroda) yang dicelupkan dalam larutan yang mampu menghantarkan listrik (elektrolit). Salah satu elektroda akan bermuatan listrik positif dan yang lain negatif. Ujung elektroda yang menonjol diatas elektrolit dikenal sebagai terminal positif dan terminal negatif. Ketika kedua terminal dihubungkan dengan kawat konduktor (mis.: tembaga), arus listrik akan mengalir melalui kawat dari terminal negatif ke positif. Beda potensial atau tekanan listrik antar terminal tergantung pada bahan elektroda dan elektrolit dan diukur dalam volt.

Dalam pemakaiannya, baterai ada yang tidak bisa diisi ulang dan ada yang bisa diisi ulang. Jenis baterai yang tidak bisa diisi ulang disebut baterai primer dan yang bisa diisi ulang disebut baterai sekunder.

Sel primer

Pada baterai kering yang biasa kita gunakan, elektroda terdiri dari dari batang karbon positif pada pusat sel dan bejana seng negatif dengan elektrolit jeli ammonium khlorida. Potensial sel kira-kira 1,5 volt. Selama pemakaian, seng secara perlahan-lahan larut ketika arus listrik dihasilkan. Ketika ammonium khlorida jenuh, aliran arus listrik berhenti dan sel harus dibuang. Sel seperti itu dikatakan primer atau tak dapat diisi ulang.

Contoh baterai yang diuraikan diatas adalah baterai tipe karbon-seng. Tipe baterai yang lebih maju adalah baterai alkaline-mangan dioksida. Baterai ini pertama kali diperkenalkan dipasar tahun 1959. Sejak itu, jenis baterai ini telah mendominasi pasar baterai portabel. Hal ini karena sistem alkaline dikenal memiliki beberapa keunggulan dibandingkan baterai tipe karbon-seng. Beberapa keunggulan kimia alkaline dibandingkan kimia karbon-seng dasar adalah:

  • Densitas energi lebih tinggi
  • Kinerja pelayanan lebih unggul pada semua laju pemakaian
  • Kinerja suhu dingin lebih unggul
  • Hambatan internal lebih rendah
  • Umur lebih lama
  • Hambatan lebih besar terhadap kebocoran

Baterai alkaline silinder dibuat dengan anoda seng dengan luas permukaan besar, katoda mangan dioksida dengan densitas tinggi dan elektrolit potasium hidroksida. Potongan melintang baterai silinder alkaline diilustrasikan pada diagram dibawah:

Leclanche

Baterai alkaline menghasilkan listrik ketika katoda mangan dioksida direduksi dan anoda seng dioksidasi. Persamaan untuk reaksi sel alkaline sederhana adalah:

Zn + 2MnO2 + H2O → ZnO + 2MnOOH

Selama reaksi ini, air (H2O) dikonsumsi dan ion hidroksil (OH-) dihasilkan oleh katoda MnO2 menurut reaksi:

2MnO2 +2H2O+2e→2MnOOH+2OH-

Pada saat yang sama, anoda mengonsumsi ion hidroksil dan menghasilkan air:

Zn + 2 OH- →ZnO +H2O + 2 e

Elektron (e) yang dihasilkan selama reaksi digunakan untuk memberi daya alat. Laju reaksi tergantung pada kualitas bahan baku dan ketersediaan air dan ion hidroksil selama reaksi. Sebuah baterai dirancang untuk menjaga katoda dan anoda terpisah untuk mencegah terjadinya reaksi. Elektron yang disimpan hanya akan mengalir ketika sirkuit tertutup. Ini terjadi ketika baterai dipasang pada alat dan alat dinyalakan. Prinsip ini sama seperti menyalakan dan mematikan saklar lampu dirumah.

Ketika sirkuit tertutup, tarikan yang lebih kuat pada elektron oleh mangan dioksida akan menarik elektron dari elektroda anoda seng melalui kawat dalam sirkuit ke elektroda katoda. Aliran elektron melalui kawat ini adalah listrik dan dapat digunakan untuk aplikasi daya.

Sel sekunder

Sel asam timbal, yang biasanya disebut aki, termasuk dalam kelompok yang disebut sel sekunder atau dapat diisi ulang. Disini, elektroda adalah timbal dioksida positif dan timbal spons negatif dengan elektrolit asam sulfat encer. Selama pemakaian, arus listrik mengalir dan elektroda positif dan negatif berubah menjadi timbal sulfat dan menyerap ion sulfat dari elektrolit dengan mereduksinya menjadi air. Tidak seperti sel kering, sel asam timbal adalah reversibel dan bisa dikembalikan ke keadaan asalnya dengan mengalirkan listrik melalui sel dalam arah yang berlawanan dari mana dilepaskan. Ini membalik reaksi dalam sel, merubah timbal sulfat dalam pelat kembali ke bahan aktif asal dan mengembalikan ion sulfat ke elektrolit.

Sel asam timbal memiliki potensial kira-kira 2 volt, berapapun ukurannya. Sel yang lebih besar akan memiliki kapasitas yang lebih tingi dan mengirimkan arus listrik yang sama untuk waktu yang lebih lama atau arus listrik lebih tinggi untuk periode yang sama daripada sel yang lebih kecil. Sel bisa dihubungkan seri (negatif dari salah satu sel ke positif dari sel berikutnya) agar memberikan tegangan yang lebih tinggi. Jadi tiga sel yang dihubungkan seri akan memberikan baterai sel yang memiliki tegangan nominal 6 volt. Enam sel sejenis yang dihubungkan seri akan menghasilkan baterai 12 volt.

Jenis baterai sekunder lain adalah baterai ion lithium, yang saat ini dipandang memiliki densitas energi dan densitas daya paling besar. Baterai ini diharapkan menjadi sumber energi masa depan untuk berbagai keperluan termasuk mobil listrik. Untuk lebih jelasnya lihat uraian disini.

Sejarah baterai

Pada artikel sebelumnya (baterai mobil listrik, baterai ion lithium, mobil listrik baterai), telah diuraikan mengenai baterai ion lithium yang merupakan baterai yang kompak dan dapat diisi ulang, yang menjadikannya harapan sumber energi masa depan untuk mobil listrik. Baterai ini telah digunakan secara luas untuk alat elektronik portabel seperti komputer notebook, HP, dsb. Banyak jenis baterai telah dikembangkan dan sadar atau tidak kita telah terbiasa menggunakannya dalam kehidupan sehari-hari. Berikut ini akan diuraikan secara singkat sejarah penemuan baterai.

Listrik ditemukan kira-kira 400 tahun yang lalu atau mungkin lebih. Tetapi pemakaian pratktisnya mungkin baru pada pertengahan sampai akhir tahun 1800an, dan awalnya dalam cara yang terbatas. Sebagai contoh, pada pameran dunia di Paris tahun 1900, salah satu atraksi utama adalah penerangan jembatan dengan listrik diatas sungai Seine.

Metoda paling awal membangkitkan listrik adalah dengan menciptakan muatan listrik statis. Pada tahun 1660, Otto von Guericke membuat mesin listrik pertama yang terdiri atas bola sulfur besar yang, ketika digosok dan diputar, menarik bulu dan sobekan kertas kecil. Guericke mampu membuktikan bahwa bunga api yang dihasilkan benar-benar listrik.

Pemakaian listrik statis pertama ditemukan oleh Alessandro Volta (1745-1827) dengan alat yang disebut “pistol listrik”. Alat ini terdiri dari sebuah kawat yang dipasang pada bejana yang berisi gas metana. Dengan mengirim bunga api listrik melalui kawat, bejana akan meledak. Volta menggunakan penemuan ini untuk komunikasi jarak jauh, meskipun hanya dengan satu bit Boolean. Sebuah kawat besi yang disangga batang kayu dibentangkan dari Como ke Milan, Italia. Pada ujung penerima, kawat berakhir pada bejana yang diisi dengan gas metana. Dengan perintah, bunga api listrik dikirim dengan kawat yang akan memicu pistol listrik untuk memberi sinyal. Sambungan komunikasi ini tidak pernah dibangun.

Pada tahun 1791, ketika bekerja di Universitas Bologna, Luigi Galvani menemukan bahwa otot katak berkontraksi ketika disentuh dengan logam. Terinspirasi oleh percobaan ini, Volta melakukan serangkaian percobaan menggunakan seng, timbal, timah atau besi sebagai pelat positif dan tembaga, perak, emas atau grafit sebagai pelat negatif. Pada tahun 1800, Volta menemukan bahwa dengan menggunakan fluida tertentu sebagai penghantar untuk mendorong reaksi antara logam dan elektroda, dapat dihasilkan arus listrik kontinyu. Ini menuju pada temuan sel volta pertama, yang lebih dikenal sebagai baterai. Volta menemukan lebih lanjut bahwa tegangan akan semakin besar ketika sel volta dipasang bersusun satu diatas yang lain.

Empat variasi baterai listrik Volta.

Temuan baru dibuat ketika Sir Humphry Davy memasang baterai listrik terbesar dan paling berdaya pada kubah Institusi Royal London. Ia menghubungkan baterai dengan elektroda arang dan menghasilkan lampu listrik pertama yang paling terang yang pernah dilihat pada masa itu. Penelitian paling penting Davy dibaktikan untuk elektrokimia. Mengikuti percobaan Galvani dan penemuan sel volta, ketertarikan terhadap listrik galvani telah menjadi tersebar luas. Davy mulai menguji pengaruh kimia terhadap listrik pada tahun 1800. Ia segera menemukan bahwa dengan mengalirkan listrik melalui suatu senyawa, senyawa ini terurai, suatu proses yang kemudian disebut elektrolisa. Tegangan yang dihasilkan secara langsung berhubungan dengan reaktivitas elektrolit dengan logam. Dengan bukti tersebut Davy memahami bahwa kerja elektrolisa dan sel volta adalah sama.

Pada tahun 1802, Dr. William Cruickshank merancang baterai listrik pertama yang dapat diproduksi secara masal. Cruickshank menyusun lembaran tembaga persegi, yang disolder pada ujungnya, bersama-sama dengan lembaran seng yang berukuran sama. Lembaran ini ditempatkan pada  kayu persegi panjang yang direkatkan dengan semen. Lekukan dalam kotak menahan pelat logam pada posisinya. Kotak ini kemudian diisi dengan elektrolit garam jenuh atau asam.

Metoda ketiga membangkitkan listrik yang ditemukan adalah listrik melalui magnet yang ditemukan pada tahun 1820 oleh Andre-Marie-Ampere (1775-1836). Ia mengamati bahwa kawat yang membawa arus listrik pada suatu saat saling tarik satu sama lain dan pada saat yang lain saling tolak.

Pada tahun 1831, michael Faraday (1791-1867) mendemonstrasikan bagaimana piringan tembaga mampu menyediakan arus listrik konstan ketika diputar pada medan magnet yang kuat.  Faraday, yang membantu Davy dan tim risetnya, berhasil membangkitkan gaya listrik terus menerus selama gerakan antara koil dan magnet berlanjut. Generator listrik ditemukan. Proses ini kemudian dibalik dan motor listrik ditemukan. Tidak lama kemudian, transformer dikembangkan yang dapat merubah listrik ke tegangan yang diinginkan. Pada tahun 1833, Faraday memantapkan dasar elektrokimia dengan hukum Faraday, yang menggambarkan jumlah reduksi yang terjadi pada sel elektrolisa.

Pada tahun 1836, John F. Daniell, ahli kimia Inggris, melanjutkan penelitian tentang baterai elektrokimia dan mengembangkan sel yang semakin baik yang menghasilkan arus listrik lebih steady daripada sel volta. Sampai saat itu, semua baterai tersusun atas sel primer, yang berarti baterai tidak dapat diisi ulang. Pada tahun 1859, ahli fisika Perancis Gaston Plate menemukan baterai yang dapat diisi ulang pertama. Baterai sekunder ini berdasarkan pada kimia asam timbal, sistem yang sampai saat ini masih digunakan.

Pada tahun 1899, Waldmar Jungner dari Swedia menemukan baterai nikel-kadmium, yang menggunakan nikel untuk elektroda positif dan kadmium untuk negatif. Dua tahun kemudian, Edison memproduksi rancangan alternatif dengan mengganti kadmium dengan besi. Karena harga bahan yang mahal dibandingkan dengan sel kering dan baterai penyimpan asam timbal, aplikasi praktis baterai nikel-kadmium dan nikel-besi terbatas. Baterai nikel-kadmium yang tersegel rapat, yang dikenal saat ini, tidak akan ada tanpa keberhasilan Neumann yang secara sempurna membuat segel sel pada tahun 1947.

Terlihat bahwa dari dulu sampai sekarang, manusia tergantung pada listrik, suatu produk yang tidak akan mungkin tanpa penemu dan peneliti yang telaten, tekun, kreatif dan tidak kenal lelah. Dengan meningkatnya kebutuhan mobilitas, pengembangan baterai yang memiliki kapastas penyimpan yang lebih besar mungkin masih dibutuhkan. Meskipun teknologi baterai sudah cukup lama ada, namun sampai saat ini penelitian dan pengembangan baterai ini masih terus berjalan untuk memenuhi kebutuhan teknologi yang terus berkembang.

Sumber: I. buchman, 2001 (www.buchmann.ca).